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Abstract 

  This article examines a model of an order on the fractional of a diseased prey predator. The model 

has been used in a non-delayed model as a Holling-type II functional response. The eigenvalues of a 

model are used to test its stability using critical points. Furthermore, the boundedness, uniqueness, 

existence, and positivity of the solutions have been studied. The locally asymptotically stable has 

been analyzed using the critical points. The occurrence of Hopf bifurcation has been examined. 

Finally, the analytical solutions are confirmed through numerical simulations. 
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1. Introduction: 

Lotka [1] and Volterra's [2] predator-prey models are crucial in current computational ecology, 

particularly in non-linear differential equation-coupled systems. Functional response is one of the 

most significant aspects of the prey-predator population, which is why epidemiological models 

have attracted a lot of interest since Kermack-Mckendrick's pioneering work on SIRS [3]. A 

generalisation of the classical differentiation and integration of arbitrary orders is fractional 

calculus. Many researchers are interested in scientific and engineering fields, including biology, 

fluid dynamics, and medicine [19,22]. The numerous applications of fractional-order calculus 

have drawn the interest of researchers throughout the last twenty years [5]. Fractional-order 

biological models have recently attracted the interest of many authors. The main reason lies in the 

fact that memory-based systems, which exist in a large number of biological systems, are easily 

relatable to fractional-order models [4]. The fractional-order derivative has the benefit that it 

allows you to remember the concept of numerical derivative calculation as well as important 

information about derivative values. Javidi investigated the fractional-order prey-predator model's 

biological behaviours [11, 23]. This article includes an investigation of the stability of a derivative 

of a fractional-order model of the mutualistic interaction between two species with infection [21].  

Alidousti studied how the capture of predators and scavengers was affected by a prey-predator 
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model with fractional order [10]. Mukherjee et al. investigated the existence, uniqueness, and 

boundedness of solutions in a restricted region for a predator-prey fractional-order system [14]. 

The dynamic interaction between prey and predator is one of the most important ecological areas 

due to its universality and significance.  

       The dynamical issues involved in the prey-predator mathematical model system can appear 

easy at first [25, 12]. Mathematical models are essential for understanding, studying, and 

investigating the expanse and management of infectious diseases [6]. The effects of infectious 

diseases in a prey-predator system have been extensively studied. In the eco-epidemiological 

model, the infection of prey is highly significant. Recently, fractional calculations have developed 

rapidly and displayed a wide range of possible applications [26]. However, due to memory effects, 

fractional order derivatives in the biological model are more sensible than integer order 

derivatives. To change ordinary calculus to fractional calculus, it is important to use the Riemann-

Lioville and Caputo fractional derivatives. One of the most important processes in any natural 

ecosystem is the predator-prey model. Caputo introduced the Caputo-type derivative in 1967 [18]. 

The study investigated a system of fractional order with a Holling type II functional response. The 

condition for stability of a system in fractional-order, which was developed using Routh-Hurwitz 

criteria, is that any function that depends on both the current and previous states is a fractional-

order derivative [20, 24]. A system with non-linear fractional order stability with the use of the 

Routh-Hurwitz criterion was investigated by Ahmed et al [13]. Garappa investigated the solution 

of nonlinear differential equations of fractional order [17]. In a prey-predator model with 

fractional order, Javidi and Nyamoradi investigated the effects of harvesting. Fractional-order 

mathematical models are utilised to tackle real-world problems. In dynamical systems, the 

conversion of the integer-order model into a fractional-order model has shown in popularity. In 

order to recognize and evaluate the spread and control of infectious diseases, mathematical 

models are essential. 

The novelty of this work is to investigate the prey-predator model's stability analysis through 

fractional-order derivatives. The analysis demonstrates that fractional calculus is well suited to 

explain the memory and inherited features of several techniques and materials that are not taken 

into consideration by classical integer models.  

The paper is organized as follows: A mathematical model is developed in Section 2. Section 3 

examines the fractional-order dynamical system's preliminary dynamics. Section 4 has evaluated 

the uniqueness and boundedness of the proposed model. Section 5 examines the stability analysis 

of the proposed model.The Hopf bifurcation analysis has been studied in Section 6. Numerical 

simulations of the proposed model are evaluated in Section 7. In Section 8, we conclude the paper 

and discuss the biological implications of our mathematical results. 

 

2. Mathematical Model Formation: 

        The study presents a three-species predator-prey model, which is further expanded by 

considering the fractional order derivative. The proposed model becomes: 

    
dU

dT
= r1U (1 −

U+V

K
) − λVU −

α1UW

a1+U
 ,                     

                                     
dV

dT
= λVU − D1V −

b1VW

a1+V
 ,                                               (1) 

                                          
dW

dT
= −D2W+

Cb1VW

a1+V
+
Cα1UW

a1+U
  .                            

subject to positive values 𝑈(0) ≥ 0, 𝑉(0) ≥ 0 and 𝑊(0) ≥ 0. 

 

Table 1: Biological representation of system (1) parameters 

Parameters Biological Representation Units 

U Susceptible prey Number per unit area (tons) 

V Infected prey Number per unit area (tons) 
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W Predator Number per unit area (tons) 

𝑟1 Intrinsic growth rate of prey per day (𝑡−1) 
K Carrying capacity of environment Number per unit area (tons) 

𝛼1 Predation rate of Susceptible prey per day (𝑡−1) 
𝑏1 Predation rate of diseased prey per day (𝑡−1) 
𝑎1 Half saturation constant 𝑚 

𝐶 Conversion rate of prey and predator 0 ≤ 𝐶 ≤ 1 

𝑑1 Ratio of prey death per day (𝑡−1) 
𝑑2 Ratio of predator death per day (𝑡−1) 
𝜆 Rate of infection per day (𝑡−1) 

                    To reduce system (1) parameters, adjust variables 𝑢 =
𝑈

𝐾
, 𝑣 =

𝑉

𝐾
, 𝑤 =

𝑊

𝐾
and consider 

dimensionless time 𝑡 = 𝜆𝐾𝑇. We now make the following modifications: 

𝑟 =
𝑟1
𝜆𝑘
, 𝛼 =

𝛼1
𝜆𝐾

, 𝑎 =
𝑎1
𝜆𝐾

, 𝑑1 =
𝐷1
𝜆𝐾

, 𝜃 =
𝑏

𝜆𝐾
, 𝑑2 =

𝐷2
𝜆𝐾
. 

The transformations listed above can be used to express equation (1) in a non-dimensional form. 
du

dt
= ru(1 − u − v) − uv −

αuw

a+u
, 

                                                              
dv

dt
= uv − d1v −

θvw

a+v
,                                             (2)                                         

  
dw

dt
= −d2w+

cθvw

a+v
+
cαuw

a+u
. 

subject to positive values 𝑈(0) ≥ 0, 𝑉(0) ≥ 0 and 𝑊(0) ≥ 0. 

 After applying the Caputo fractional-order derivative β to system (2), the system is then transformed 

into the following form: 

 

                   
dβu

dtβ
= ru(1 − u − v) − uv −

αuw

a+u
,

dβv

dtβ
= uv − d1v −

θvw

a+v
,

           
dβw

dtβ
= −d2w+

cθvw

a+v
+
cαuw

a+u }
 
 

 
 

     (3) 

subject to positive values 𝑈(0) ≥ 0, 𝑉(0) ≥ 0 and 𝑊(0) ≥ 0. 

3. Preliminaries: 

  This section gives basic explanations of fractional differential equations, their significance, and 

their features. These are essential for proving theorems. 

Definition: 1 [7] 

 The Caputo fractional derivative of order 𝛽 is defined as 

𝐶𝐷𝑡
𝛽
𝑓(𝑡) =

1

Γ(1 − 𝛽)
∫ (𝑡 − 𝑠)−𝛽𝑓 ′(𝑠)𝑑𝑠
𝑡

0

  

4.   Existence and Uniqueness of Solutions: 

This section examines the existence, uniqueness and boundedness of the solution of the system (3).  

Theorem: 3 

                The positive initial conditions of the fractional-order system (3) have a single solution. 

Proof: 

  A sufficient requirement for system (3) solutions in the area 𝜒 × (0, 𝑇]. 
Where, 

𝜒 = {(𝑢, 𝑣, 𝑤) ∈ 𝑅3:max (|𝑢|, |𝑣|, |𝑤|) ≤ 𝜂} 
Now, let us calculate 𝐺(𝑋) = (𝐺1(𝑋), 𝐺2(𝑋), 𝐺3(𝑋)) 
Where, 

               G1(X) = ru(1 − u − v) − uv −
αuw

a + u
, 
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         G2(X) = uv − d1v −
θvw

a + v
, 

                                               G3(X) = −d2w+
cθvw

a+v
+
cαuw

a+u
. 

∥ 𝐺(𝑋) − 𝐺(𝑋̅) ∥ = |𝐺1(𝑋) − 𝐺1(𝑋̅)| + |𝐺2(𝑋) − 𝐺2(𝑋̅)| + |𝐺3(𝑋) − 𝐺3(𝑋̅)| 

                     = | ru(1 − u − v) − uv −
αuw

a + u
− ru̅(1 − u̅ − v̅) + u̅v̅ +

αu̅v̅

a + u̅
|

+ |uv −
θvw

a + v
− d1v − u̅v̅ + d1v̅ +

θv̅w̅

a + v̅
|

+ |−d2w+
cαuw

a + u
+
cθvw

a + v
+ d2w̅ −

cθv̅w̅

a + v̅
+
cαu̅w̅

a + u̅
| 

≤ {𝑟 + 2𝑟𝜂 + 𝜂 + 𝛼𝑎(1 + 𝑐)𝜂 + 𝜂(𝛼 + 1)}|𝑢 − 𝑢̅|
+ {𝑟𝜂 + 2𝜂 + 𝑑1 + 𝜃𝑎𝜂(1 + 𝑎) + 𝜃𝜂 + 𝜂(𝑟 + 2 + 𝜃)}|𝑣 − 𝑣̅|
+ {(1 + 𝑐)𝑎𝛼𝜂 + (1 + 𝑐)𝜃𝑎𝜂 + 𝑐𝜂(𝜃 + 𝛼 + 𝑑2)}|𝑤 − 𝑤̅| 

        ≤ ℚ|𝑋 − 𝑋̅| 
where  

ℚ = max {𝑟 + 2𝑟𝜂 + 𝜂 + 𝛼𝑎(1 + 𝑐)𝜂 + 𝜂(𝛼 + 1), 𝑟𝜂 + 2𝜂 + 𝑑1 + 𝜃𝑎𝜂(1 + 𝑎) + 𝜃𝜂
+ 𝜂(𝑟 + 2 + 𝜃), (1 + 𝑐)𝑎𝛼𝜂 + (1 + 𝑐)𝜃𝑎𝜂 + 𝑐𝜂(𝜃 + 𝛼 + 𝑑2)} 

As a result, the system (3) solution exists and is unique. 

4.1 Boundedness of Solutions: 

Theorem: 4 

    The system's (3) solutions are all positive and uniformly bounded. 

Proof: 

              Construct a function  

𝑉(𝑡) = 𝑢(𝑡) + 𝑣(𝑡) + 𝜔𝑤(𝑡) 
Then for each 𝜂 > 0, we obtain 

𝐶𝐷𝑡
𝛽
+ 𝜂𝑉(𝑡) = (𝑟𝑢 − 𝑢𝑣 −

𝛼𝑢𝑤

𝑎 + 𝑢
) + (𝑢𝑣 − 𝑑1𝑣 −

𝜃𝑣𝑤

𝑎 + 𝑣
) + 𝜔 (−𝑑2𝑤 +

𝑐𝜃𝑣𝑤

𝑎 + 𝑣
+
𝑐𝛼𝑢𝑣

𝑎 + 𝑢
) + 𝜂(𝑢

+ 𝑣 + 𝜔𝑤) 

= (𝑟 + 𝜂𝑢) − 𝑟𝑢2 − 𝑟𝑢𝑣 + 𝑐𝜃 (𝜂 −
1

𝑐
) 

𝑣𝑤

𝑎 + 𝑣
+
𝑐𝛼𝑤𝑢

𝑎 + 𝑢
(𝜂 −

1

𝑐
) + (𝜂 − 𝑑1)𝑣 + 𝜂(𝜂 − 𝑑1)𝑤 

By choosing 𝜂 < min {𝑑1, 𝑑2} and 𝜂 < min {
1

𝑐
}, we have  

𝐶𝐷𝑡
𝛽
+ 𝜂𝑉(𝑡) ≤ (𝑟 + 𝜂)𝑢 − 𝑟𝑢2 

= (𝑟 + 𝜂)𝑢 − 𝑟𝑢2 − (
𝑟 + 𝜂

2
)
2

+ (
𝑟 + 𝜂

2
)
2

 

≤
(𝑟 + 𝜂)2

2
 

Applying the Lemma 2, we have 

𝑉(𝑡) ≤ (𝑉(0) −
(𝑟 + 𝜂)2

4𝜂
)𝐸𝛽[𝜂𝑡

𝛽] +
(𝑟 + 𝜂)2

4𝜂
 

Here, we know that 𝑉(𝑡) is convergent to 
(𝑟+𝜂)2

4𝜂
 for 𝑡 → ∞. 

Therefore, the solutions of system (3) with nonnegative initial conditions are all contained within the 

area Ω. 

Where, 

Ω = {(𝑢, 𝑣, 𝑤) ∈ 𝑅+
3 : 𝑉(𝑡) ≤

(𝑟 + 𝜂)2

4𝜂
+ 𝜖, 𝜖 > 0}. 

 

5. Critical points and Stability analysis: 
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     The possible critical points of the system (3) are discussed in this section. 

(i) 𝐸0(0,0,0) is denoted as a trivial critical point. 

 

(ii)  𝐸1(1,0,0) is denoted as a axial critical point. 

 

(iii) 𝐸2(𝑢̅, 0, 𝑤̅) is denoted as a infected free critical point, 

              Where  𝑢̅ =
𝑑2𝑎

𝑑2−𝑐𝛼
 and 𝑤̅ =

𝑎𝑐((𝑐𝛼−𝑑2)𝑟−𝑎𝑟𝑑2

(𝑐𝛼−𝑑2)2
. 

(iv) 𝐸3(𝑢̂, 𝑣, 0) is denoted as a predator free critical point,  

           Where 𝑢̂ = 𝑑1 an𝑑 𝑣 =
𝑟(1−𝑑1)

𝑟+1
. 

(v) 𝐸∗(𝑢∗, 𝑣∗, 𝑤∗) is denoted as a interior critical point, 

Where 𝑣∗ =
𝑎(𝑎𝑑2+(𝑑2−𝑐𝛼)𝑢

∗)

(𝑐𝛼𝑢∗+(𝑐𝜃−𝑑2)(𝑎+𝑢∗))
   and 𝑤∗ =

𝑎𝑐(𝑢∗−𝑑1)(𝑎+𝑢
∗)

(𝑐𝛼𝑢∗+(𝑐𝜃−𝑑1)(𝑎+𝑢∗))
, 

and 𝑢∗ is the only positive root of the equation for a quadratic function. 

𝐴𝑢2 + 𝐵𝑢 + 𝐶 = 0, 
 

Where          𝐴 = 𝑟(𝑐𝛼 + 𝑐𝜃 − 𝑑2), 
 

                𝐵 = (𝑐𝜃 − 𝑑2)(−𝑟 + 𝑎𝑟) − 𝑟𝛼𝑐 + 𝑎(𝑑1 + (𝑑1 − 𝑐𝛼)𝑟), 
 

     𝐶 = −𝑎((𝑟)(𝑐𝜃 − 𝑑1) + (𝑐𝛼(𝑑1) − 𝑎𝑑2(1+ 𝑟))). 

5.1 Stability Analysis: 

To carry out an investigation of local stability around a number of critical points, we now want to 

compute the Jacobian matrix.The Jacobian matrix at any (𝑢, 𝑣, 𝑤) is given by 

𝐽(𝑢, 𝑣, 𝑤) = (

𝑛11 𝑛12 𝑛13
𝑛21 𝑛22 𝑛23
𝑛31 𝑛32 𝑛33

) 

Where, 

𝑛11 = 𝑟(1− 2𝑢) − 𝑣(𝑟 + 1) −
𝛼𝑎𝑤

(𝑎+𝑢)2 
 , 𝑛12 = −𝑢(𝑟 + 1), 𝑛13 = −

𝛼𝑢

𝑎+𝑢
, 

𝑛21 = 𝑣, 𝑛22 = 𝑢 − 𝑑1 −
𝑎𝜃𝑤

(𝑎 + 𝑣)2
, 𝑛23 =

𝜃𝑣

𝑎 + 𝑣
, 

𝑛31 =
𝑎𝑐𝛼𝑤

(𝑎 + 𝑢)2
, 𝑛32 =

𝑎𝜃𝑤𝑐

(𝑎 + 𝑣)2
, 𝑛33 =

𝑐𝜃𝑣

(𝑎 + 𝑣)2
+
𝛼𝑐𝑢

𝑎 + 𝑢
− 𝑑2. 

Theorem: 5 

  𝐸0(0,0,0) is the trivial critical point, which is saddle. 

Proof: 

The eigenvalues are 𝜆1 = 𝑟, 𝜆2 = −𝑑1 and 𝜆3 = −𝑑2. 

Thus, |arg (𝜆1)| = 0 <
𝛽𝜋

2
 , |arg (𝜆2)| = 𝜋 >

𝛽𝜋

2
 and |arg (𝜆3)| = 𝜋 >

𝛽𝜋

2
  (see theorem 1 [15]). 

Hence,  𝐸0 is saddle. 

Theorem : 6 

 The axial critical point 𝐸1(1,0,0) , which is unstable. 

Proof: 

The eigenvalues are 𝜆1 = −𝑟, 𝜆2 = 1 − 𝑑1 and 𝜆3 = −𝑑2 +
𝑐𝛼

𝑎+𝑢
. 

Thus, |arg (𝜆1)| = 0 <
𝛽𝜋

2
 , |arg (𝜆2)| = 𝜋 >

𝛽𝜋

2
  and |arg (𝜆3)| = 𝜋 >

𝛽𝜋

2
 (see theorem 1 [15]). 

Due to numerical simulation table values, 1− 𝑑1 is positive. 

Hence, the equilibrium point 𝐸1 is unstable. 

Theorem : 7 
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   The infected-free critical point 𝐸2(𝑢̅, 0, 𝑤̅) , which is locally asymptotically stable if 𝐴, 𝐶, 𝐴𝐵 −
𝐶 is positive. 

Proof: 

The Jacobian matrix mentioned above has a characteristic equation that is given by 

𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0. 
Where,  

𝐴 = −𝑓11 − 𝑓22, 
𝐵 = −𝑓31𝑓13 + 𝑓22𝑓11, 

𝐶 = 𝑓13𝑓31𝑓12. 
Using the Routh Hurwitz criterion (see Proposition 1 [28]), 

Hence, 𝐸2 is locally asymptotically stable. 

Theorem: 8 

  The predator free critical point 𝐸3(𝑢̂, 𝑣, 0) , which is locally asymptotically stable if 𝑑2 > 𝑐(𝛼 + 𝜃). 
Proof: 

The Jacobian matrix mentioned above has a characteristic equation that is given by 

𝜆3 + 𝑋𝜆2 + 𝑌𝜆 + 𝑍 = 0. 
Where,  

𝑋 = −𝑎11 − 𝑎22, 
             𝑌 = −𝑎31𝑎13 + 𝑎22𝑎11, 

𝑍 = 𝑎13𝑎31𝑎12. 
Using the Routh Hurwitz criterion (see Proposition 1 [28]), 

Hence, 𝐸3 is locally asymptotically stable. 

Theorem: 9 

         The interior critical point 𝐸∗(𝑢∗, 𝑣∗, 𝑤∗), which is locally asymptotically stable. 

Proof: 

The Jacobian matrix mentioned above has a characteristic equation that is given by 

                           𝜆3 + 𝐿𝜆2 +𝑀𝜆 + 𝑁 = 0.                      (4) 
Where,  

𝐿 = −𝑔11 − 𝑔22, 
                                                             𝑀 = −𝑔31𝑔13 + 𝑔22𝑔11, 
𝑁 = 𝑔13𝑔31𝑔12. 
Using the Routh Hurwitz criterion (see Proposition 1 [28]), 

Hence,  𝐸∗ is locally asymptotically stable. 

6. Hopf Bifurcation analysis: 

              In this section, we study the bifurcation of the fractional order model analytically, 

considering the effect of fractional order 𝛽. The following theorem, which takes the fractional order 

derivative parameter 𝛽 as a variable, shows the existence of Hopf bifurcation. 

Theorem:11 

      When bifurcation parameter β passes through the critical value 𝛽∗ ∈ (0,1), the fractional-order 

system (3) undergoes a Hopf bifurcation at the endemic equilibrium point𝐸∗, given that the following 

requirements are met: 

(i) the corresponding characteristic equation (4) of system (3) has a pair of complex 

conjugates  𝜆1,2 = 𝜃 + 𝑖𝜔, where 𝜃 > 0 and one negative real root 𝜆3. 

(ii) 𝑚(𝛽∗) =
𝛽∗𝜋

2
− min

1≤𝑖≤3
|arg (𝜆𝑖)| = 0. 

(iii) (
𝑑𝑚(𝛽)

𝑑𝛽
)
𝛽=𝛽∗

≠ 0. 

Here, we provide the conditions in which there would be a Hopf bifurcation at the interior critical 

point  𝐸∗ as the derivative's order approaches a critical value. 

Proof: 
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        Since 𝜆1,2 = 𝜃 + 𝑖𝜔 and 𝑚(𝛽) =
𝑡𝑡

2
− min

1≤𝑖≤3
|arg (𝜆𝑖)|,  

Thus, we get 

𝑚(𝛽∗) =
𝛽∗𝜋

2
− min

1≤𝑖≤3
|arg (𝜆𝑖)| 

=
𝛽∗𝜋

2
− arctan (

𝜔

𝜃
) 

= arctan (
𝑡

𝜃
) − arctan (

𝜔

𝜃
) = 0 

Furthermore, (
𝑑𝑚(𝛽)

𝑑𝛽
)
𝛽=𝛽∗

=
𝜋

2
≠ 0. 

 As a result, when β crosses the crucial value 𝛽∗, the system (3) experiences a Hopf-bifurcation at 𝐸∗ 
since all the requirements for its occurrence are met. 

 

7. Numerical  Simulations: 

This section displays the numerical simulation findings for models of fractional-order eco-epidemics 

with caputo sense. Diethelm et al.'s predictor-corrector approach is used to solve the defined model. 

[16]. 

The simulations are executed with the succeeding assumed values:  

r = 0.7, α = 0.2, a = 0.3, d1 = 0.4, θ = 0.4, d2 = 0.1, c = 0.5 

(i) When 𝛽 = 1, Figures 1 and 2 show the unstable solution for the critical point 

E2(0.7,0.01,0.5). 
(ii) When 𝛽 = 0.94, Figures 3 and 4 show the locally asymptotically stable for the critical 

point E2(0.7,0.01,0.5). 
Next, the parameter values are chosen as 

r = 0.5, α = 0.15, a = 0.2, d1 = 0.1, θ = 0.4, d2 = 0.1, c = 0.5 

(i) Figures 5 and 6 illustrates how the interior critical point E4(0.7, 0.04, 0.3)  becomes 

unstable when β = 1. 

(ii) Figures 7,8 and 9 illustrates the significance of the fractional-order β when β =
0.92, 0.84, 0.76, 0.64  and the interior critical E4(0.7, 0.04, 0.3) becomes locally 

asymptotically stable. 

Here, we observe that the infected prey species and the susceptible prey-predator species begin to 

oscillate in density. However, this high-amplitude species oscillation causes an exceptionally low 

population density, which could cause the multispecies community to become unstable and raise 

the probability that some species will go extinct. From Figure 7, 8, 9, we can conclude that the 

fractional-order derivative values decreased from 1 to 0.92, 0.84, 0.76, and 0.64 the equilibrium 

point is transformed from unstable state to stable state. As a result, we can say that the integer-

order model is less stable than the fractional-order model. Hopf-bifurcation is used to shift the 

dynamics from an unstable to a stable steady state when the fractional order derivative parameter 

β exceeds the threshold value of β
∗
 = 0.41. Hopf bifurcation occurs at fractional order derivative 

β = 0.41 is shown in Figures (10, 11, 12). According to the numerical simulation results, when 

the value of β (fractional derivative order) increases from 0 to 1, the proposed system stabilises 

the system, turning it from an unstable to a stable state. 
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Figure 1: Time series solution of system (3) of the critical point E2 when β = 1. 

 
Figure 2: At the critical point E2, the phase portrait solution of system (3) when β = 1. 
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Figure 3: Time series solution of system (3) of the critical point E2 when β = 0.94. 

 
Figure 4: At the critical point E2, the phase portrait solution of system (3) when β = 0.94 
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Figure 5: Time series solution of system (3) of the critical point E4 when β = 1. 

 
Figure 6: At the critical point E4, the phase portrait solution of system (3) when β = 1. 
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 Figure 7: Susceptible prey population response to the fractional-order β at system (3) critical 

point E4. 

 

 

 
Figure 8:  Infected prey population response to the fractional-order β at system (3) critical point 

E4. 
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Figure 9: Predator population response to the fractional-order β at system (3) critical point E4. 

  
Figure 10:  Bifurcation diagram for the fractional-order β on the susceptible prey population at 

system (3) critical pointE4. 
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Figure 11:  Bifurcation diagram for the fractional-order β on the infected prey population at 

system (3) critical pointE4. 

 
Figure 12: Bifurcation diagram for the fractional-order β on the predator population at system 

(3) critical pointE4. 

8.   Conclusion: 
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This study analysed a three-species food web model using fractional-order derivatives. We have 

also looked into the local stability of each critical point in our proposed fractional-order system. 

A number of biological systems that are highly dependent on historical events have been 

described using fractional-order mathematical models. These findings suggest that the 

mathematical model of fractional order can be useful in explaining system dynamics with useful 

memory. For a fractional-order system, the unstable system with integer-order β = 1 becomes 

stable at various values of β in the range 0 < β < 1. Hence, the fractional-order derivative β 

provides detailed information about the proposed model's dynamical behaviour. 
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